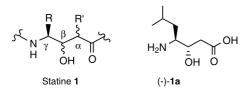


Tetrahedron Letters 43 (2002) 6325-6328

New organometallic approach to derivatives of α -substituted statines from N,N-dibenzylaminoaldehydes

Nicolas Le Carrer-Le Goff,^{a,b} Patrick Audin,^a Joëlle Paris^{a,*} and Bernard Cazes^{b,*}


^aLaboratoire de Chimie Thérapeutique, EA 635, ISPB, 8 Av. Rockefeller, 69373 Lyon Cedex 08, France ^bLaboratoire de Chimie Organique I, associé au CNRS, Université Claude Bernard-Lyon, Bât. CPE-Lyon, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne, France

Received 10 May 2002; revised 10 July 2002; accepted 12 July 2002

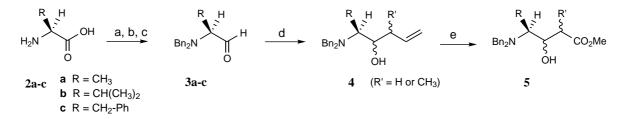
Abstract— α -Substituted statines derivatives were synthesized via the zinc-mediated allylation of *N*,*N*-dibenzyl α -aminoaldehydes followed by ozonolysis of the intermediate homoallylic alcohols. © 2002 Elsevier Science Ltd. All rights reserved.

In recent years, β -hydroxy- γ -aminoacids 1 (statines) have received much attention since these aminoacids are key units in peptidomimetic protease inhibitors (Fig. 1).¹ Particularly aspartic proteases including pepsin, renin, HIV-1 and HIV-2 proteases, plasmepsin, cathepsin D and β -secretase are targets for peptidomimetic inhibitors.² The majority of protease inhibitors are based on transition-state analogues as replacements for the dipeptide subunit at the cleavage bond of the substrate. The statine moiety replaces this subunit that contains the scissile amide bond ($P_1-P'_1$ residues). The critical hydroxyl group of statines acts as transitionstate mimic which interacts with the two catalytic aspartates.^{2,3} Furthermore, the configuration of the C_B chiral center influences the binding affinity of the inhibitors.^{4,5} So, statines act as isosteres for a restricted conformation of a dipeptide unit.

In order to replace the missing P'_1 side chain, it would be of interest to introduce a substituent at the α -posi-

Keywords: α -aminoaldehydes; organozinc reagents; homoallylic alcohols; statines.

tion of statines.⁶ Synthesis of statine, (–)-(3S,4S)-4amino-3-hydroxy-6-methylheptanoic acid **1a**, and its *N*-protected ester derivatives are well described.⁷ On the other hand, only a few examples of α -substituted statines have appeared in the literature, mainly via ring-opening of α , β -epoxy ester^{6,8} and aldol-type reactions.^{9,10}

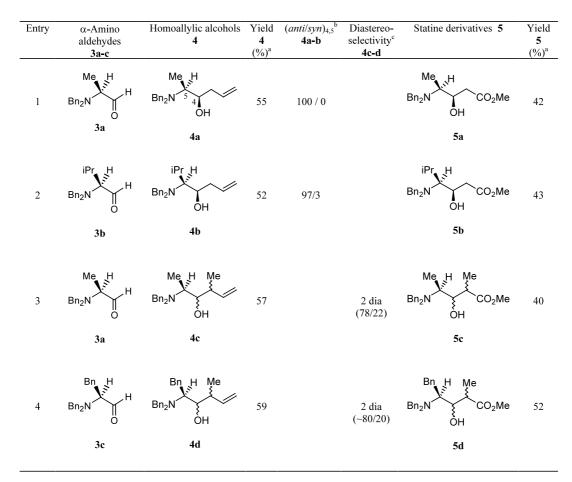

In our ongoing studies to synthesize new statines functionalized at the C_{α} position¹⁰, we report here on an expeditious synthetic route to these isosteres via the well described metal-mediated allylation of *N*-protected α -aminoaldehydes^{11,12} followed by the ozonolysis of the double-bond (Scheme 1).

The *N*,*N*-dibenzylaminoaldehydes **3** were selected as starting materials for they are easily prepared in enantiomeric pure form from α -amino acids **2** and are useful chiral building blocks in C–C bond forming reactions.¹² Particularly the addition of organometallic allylic reagents (Mg¹³, Ti¹³, B¹⁴, Zn¹⁵, Cr¹⁶, In¹⁷) to these derivatives has been described to give homoallylic alcohols with a high *anti* diastereoselectivity.^{12,18} Barbier-type zinc-mediated allylation in aqueous media was chosen for this last reason and for its procedure convenience.¹⁹

Thus, *N*,*N*-dibenzylaminoaldehydes **3a–c** derived from alanine, leucine and phenylalanine **2a–c**, respectively, were prepared according to the Reetz procedure.¹² Treatment of these aldehydes **3a–c** with organozinc reagents generated in situ from allyl and crotyl bromide in NH₄Cl aqueous medium following a modified reported procedure²⁰ afforded homoallylic alcohols **4**.

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)01401-6

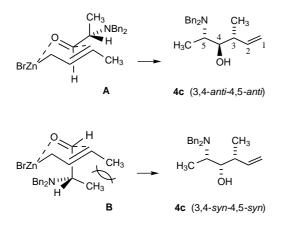
^{*} Corresponding authors. Fax: +33 4.72.43.12.14 (B.C.); fax: +33 4.78.77.75.49; e-mail: paris@univ-lyon1.fr; cazes@univ-lyon1.fr


Scheme 1. Reagents and conditions: (a) K_2CO_3 , BnBr; (b) LiAlH₄, THF; (c) COCl₂, NEt₃, DMSO; (d) R'-CH=CH-CH₂Br, Zn, THF, NH₄Cl; (e) O₃, NaOH, CH₃OH, CH₂Cl₂, -78°C.

Ozonolysis of the double bond was carried out in CH_2Cl_2 -MeOH in the presence of sodium hydroxide.²¹ Under these conditions the intermediate ozonides were directly transformed to the statine methyl esters **5** (Scheme 1, Table 1).

The addition of allylzinc bromide to N,N-dibenzylaminoaldehydes **3a,b** (entries 1, 2) gave the *anti* homoallylic alcohols **4a,b** practically as unique diastereomers (*anti/syn*>97/3) as already described.¹⁵ This very high *anti* diastereoselectivity has been explained by allylation from the less hindered *re* face of the carbonyl group following a non-chelated Felkin– Anh model.^{15,20,22} Ozonolysis then gave the β -hydroxyesters **5a,b** with moderate unoptimized yields.

The addition of crotylzinc bromide to aminoaldehyde **3a** (entry 3) afforded alcohol **4c** as a mixture 78:22 of two of the four possible diastereomers to which the stereochemistry 3,4-*anti*-4,5-*anti* and 3,4-*syn*-4,5-*syn* were attributed, respectively (Scheme 2).²³ These assignments resulted from the analysis and comparison of their ¹H and ¹³C NMR spectra with the ones of the four diastereomers of alcohol **4c** which have been already prepared by Hoffmann et al.¹⁴ The major diastereomer **4c** (3,4-*anti*-4,5-*anti*) was the expected


Table 1. Synthesis of statine methyl esters 5

^aYield of purified product after flash-chromatography.

^b anti/syn Ratio estimated by GLC analysis.

^c Diastereomeric ratio estimated by ¹H NMR spectroscopy

Scheme 2.

one and resulted from the chairlike transition state **A** where both the γ -methyl group of the crotyl reagent and the chiral residue of the aminoaldehyde **3a** are in pseudo-equatorial position.¹⁸ The minor one should emerge from the less favored transition state **B** in which the latter group is in the axial position (Scheme 2). The subsequent ozonolysis gave the statine **5c** as a mixture from which the major diastereomer could be obtained pure by chromatography.²⁴

Crotylzinc bromide reacted likewise with α -aminoaldehyde **3c** (entry 4). It gave the homoallylic alcohol **4d** also as a mixture of two diastereomers (ratio 80:20; supposed to be the *anti–anti* and *syn–syn* diastereomers by analogy with alcohol **4c**) as shown by analysis of its ¹H and ¹³C NMR spectra. The corresponding βhydroxyester **5d** was further obtained by ozonolysis of the terminal double bond.

In summary, we have demonstrated that α -substituted statine derivatives can be obtained by the diastereoselective zinc-mediated condensation of allylic bromides to *N*,*N*-dibenzyl α -aminoaldehydes followed by ozonolysis of the intermediate homoallylic alcohols.

References

- Mishi, T.; Saito, F.; Magahori, H.; Kataoka, M.; Morisowa, Y.; Yabe, Y.; Sakurai, M.; Higashida, S.; Shoji, M.; Matsushita, Y.; Iijima, Y.; Ohizumi, K.; Koike, H. *Chem. Pharm. Bull.* **1990**, *38*, 103–109.
- Maly, D. J.; Huang, L.; Ellman, J. A. Chembiochem 2002, 3, 16–37.
- 3. Rich, D. H. J. Med. Chem. 1985, 28, 263-273.
- Chen, X.; Tropsha, A. J. Med. Chem. 1995, 38, 42–48.
 Alemany, C.; Bach, J.; Farras, J.; Garcia, J. Org. Lett.
- 1999, 1, 1831–1834.
 Scholz, D.; Billich, A.; Charpiot, B.; Ettmayer, P.; Lehr, P.; Rosenwirth, B.; Schreiner, E.; Gstach, H. J. Med.
- P.; Rosenwirth, B.; Schreiner, E.; Gstach, H. J. Med. Chem. 1994, 37, 3079–3089.
 7 (a) Maibaum J: Pich D H J. Org. Chem. 1988, 53
- (a) Maibaum, J.; Rich, D. H. J. Org. Chem. 1988, 53, 869–873;
 (b) Nebois, P.; Greene, A. E. J. Org. Chem. 1996, 61, 5210–5211;
 (c) Kwon, S. J.; Ko, S. Y. Tetrahedron Lett. 2002, 43, 639–641.

- 8. Reetz, M. T.; Lauterbach, E. H. *Tetrahedron Lett.* **1991**, *32*, 4477–4480.
- (a) Lehr, P.; Billich, A.; Charpiot, B.; Ettmayer, P.; Scholz, D.; Rosenwirth, B.; Gstach, H. J. Med. Chem. 1996, 39, 2060–2067; (b) Travins, J. M.; Bursavich, M. G.; Veber, D. F.; Rich, D. H. Org. Lett. 2001, 3, 2725– 2728.
- 10. Piveteau, N.; Audin, P.; Paris, J. Synlett 1997, 1269-1270.
- Jurczack, J.; Golebiowski, A. Chem. Rev. 1989, 89, 149– 164.
- 12. Reetz, M. T. Chem. Rev. 1999, 99, 1121-1162.
- Reetz, M. T.; Drewes, M. W.; Schmitz, A. Angew. Chem., Int. Ed. Engl. 1987, 26, 1141–1143.
- 14. Brinkmann, H.; Hoffmann, R. W. Chem. Ber. 1990, 123, 2395–2401.
- Hanessian, S.; Park, H.; Yang, R.-Y. Synlett 1997, 353– 354.
- Ciapetti, P.; Falorni, M.; Taddei, M. *Tetrahedron* 1996, 52, 7379–7390.
- Paquette, L. A.; Mitzel, T. M.; Isaac, M. B.; Crasto, C. F.; Schomer, W. W. J. Org. Chem. 1997, 62, 4293–4301.
- For reviews on the stereodifferentiated addition of allylic organometallic compounds to carbonyl group, see: (a) Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1982, 21, 555–566; (b) Yamamoto, Y. Acc. Chem. Res. 1987, 20, 243–249.
- (a) Pétrier, C.; Luche, J.-L. J. Org. Chem. 1985, 50, 910–912; (b) Pétrier, C.; Einhorn, J.; Luche, J.-L. Tetrahedron Lett. 1985, 26, 1449–1452; (c) Wilson, S. R.; Guazzaroni, M. E. J. Org. Chem. 1989, 54, 3087–3091.
- Gryko, D.; Urbanczyck-Lipkowska, Z.; Jurczak, J. Tetrahedron 1997, 53, 13373–13382.
- (a) Marshall, J. A.; Garofalo, A. W.; Sedrani, R. C. Synlett 1992, 643–645; (b) Marshall, J. A.; Garofalo, A. W. J. Org. Chem. 1993, 58, 3675–3680.
- (a) Chérest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 2199–2204; (b) Anh, N. T. Top. Curr. Chem. 1980, 88, 145–162.
- 23. Typical procedure (entry 3). Crotyl bromide (1.4 g, 10.4 mmol, 2 equiv.) was slowly added to a suspension of N,N-dibenzylaminoaldehyde 3a (1.31 g, 5.2 mmol) and Zn (1.37 g, 20.8 mmol, 4 equiv.) in THF (15 mL)/saturated aqueous NH₄Cl (3 mL) maintained at 0°C. After stirring for 6 h, another equivalent of crotyl bromide was added. The mixture was stirred at room temperature overnight, diluted with water and extracted with AcOEt. The solvents were evaporated to afford a crude residue that was purified by flash-chromatography on silica gel with hexane/AcOEt (90/10). 5-Dibenzylamino-3-methylhexen-4-ol 4c (908 mg, 57%) was obtained as a mixture 78/22 of two diastereomers. $R_{\rm f}$ (SiO₂, PE/Et₂O: 50/50) = 0.72. IR (neat), cm⁻¹: 3452, 3063, 2965, 2803, 1635, 1602, 1494, 1453, 1377, 1242, 1111, 1073, 1028, 998, 970, 913, 828. Spectral data for 4c (anti-anti): ¹H NMR (200 MHz, CDCl₃) δ ppm: 0.95 (d, J = 7.0 Hz, 3H, 3-C-CH₃); 1.14 (d, J=6.7 Hz, 3H, 6-CH₃); 1.45 (br.s, 1H, OH); 2.74 (quint, J = 6.7 Hz, 5-CH-N); 3.4–3.5 (m, 1H, 4-CH-O); 3.51 and 3.78 (syst. AB, J = 13.7 Hz, 4H, 2×CH₂-N); 4.90 (dd, J=17.3 and 1.9 Hz, 1H, 1-CH); 5.0 (m, 1H, 1-CH);5.43 (ddd, J = 17.3, 10.6 and 7.1 Hz, 1H, 2-CH); 7.2-7.4 (m, 10H, ArH). ¹³C NMR (50 MHz, CDCl₃) δ ppm: 8.6 (6-C); 16.6 (3-C-CH₃); 39.3 (3-C); 54.6 (2×CH₂-N); 55.0 (5-CH-N); 76.8 (4-CH-O); 116.8 (1-C); 126.9, 128.3 and

129.0 (3×*C* Ar.); 139.0 (2-*C*), 140.4 (*C* Ar.). **4c** (*syn–syn*): ¹H NMR (200 MHz, CDCl₃) δ ppm: 0.62 (d, *J*=6.8 Hz, 3H, 3-C-C*H*₃); 1.16 (d, *J*=6.6 Hz, 3H, 6-C*H*₃); 2.77 (quint, *J*=6.7 Hz, 5-C*H*-N); 3.7–3.8 (m, 1H, 4-C*H*-O); 3.46 and 3.76 (syst. AB, *J*=13.6 Hz, 4H, 2xC*H*₂-N); 4.80–5.0 (m, 1H, 1-C*H*); 5.0–5.2 (m, 1H, 1-C*H*); 5.77 (ddd, *J*=17.7, 10 and 6.7 Hz, 1H, 2-C*H*); 7.2–7.4 (m, 10H, Ar*H*). ¹³C NMR (50 MHz, CDCl₃) δ ppm: 8.7 (6-C); 11.8 (3-C-CH₃); 39.1 (3-C); 54.4 (5-CH-N); 54.6 (2×CH₂-N); 76.2 (4-CH-O); 114.6 (1-C); 127.0, 128.3, 129.1 and 140.2 (4×C Ar.); 142.4 (2-C). These ¹H and ¹³C NMR data were in very good agreement with the ones described by Hoffmann et al. for the *anti–anti* and *syn–syn* diastereomers.¹⁴

24. Methyl 4-dibenzylamino-2-methyl-3-hydroxypentanoate
5c. Ozone was allowed to bubble into a stirred solution maintained at -78°C of alcohol 4c (308 mg, 1 mmol) in 2.5 M methanolic sodium hydroxide (2 mL) and CH₂Cl₂ (8 mL) until the solution became blue (~90 min). The

solution was warmed up, diluted with ether and hydrolyzed. After extraction with ether and drying on Na₂SO₄, the solvents were evaporated under vacuo. The crude residue was purified by flash-chromatography (PE/ Et₂O: 40/60) to give the β -hydroxyaminoester **5c** (136 mg, 40%). A second chromatography afforded the major diastereomer of **5c** as a colorless oil. $R_f(SiO_2, hexane/Et_2O:$ 20/80 = 0.38). $[\alpha]_{D}^{20} - 8$ (c 1, CH₂Cl₂). IR (neat) cm⁻¹: 3380, 3062, 3029, 2978, 2949, 1737, 1616, 1496, 1454, 1200. ¹H NMR (200 MHz, CDCl₃) δ ppm: 0.82 (d, J=7 Hz, 3H, 2-C-CH₃); 1.37 (d, J=7 Hz, 3H, 5-CH₃); 2.35 (m, 1H, 2-CH); 2.62 (m, 1H, 4-CH-N); 3.33 and 3.85 (syst. AB, J=13.3 Hz, 4H, 2×CH₂-N); 3.48 (m, 1H, 3-CH-O); 3.69 (s, 3H, O-CH₃); 5.50 (s, 1H, OH); 7.2–7.4 (m, 10H, ArH). ¹³C NMR (50 MHz, CDCl₃) δ ppm: 11.1 (2-C-CH₃); 14.1 (5-C); 43.2 (2-C); 51.9 (O-CH3); 55.3 (CH₂-N); 57.7 (3-C-OH); 76.1 (4-C-N); 126.5, 127.6, 128.7 and 136.6 (4×*C* Ar.); 175.8 (1-*C*=O).